data UltList : Type -> Type -> Type
A list of elements alternating between two types starting and
ending with an `ult`imate.
Totality: total
Visibility: public export
Constructors:
Ultimate : ult -> UltList pen ult
ConsUlt : ult -> pen -> UltList pen ult -> UltList pen ult
Hints:
Uninhabited (UltListEquality penRel ultRel (Ultimate i) (ConsUlt j1 y js))
Uninhabited (UltListEquality penRel ultRel (ConsUlt i1 x is) (Ultimate j))
Nil : ()
- Totality: total
Visibility: public export (::) : ult -> () -> UltList pen ult
- Totality: total
Visibility: public export
Fixity Declaration: infixr operator, level 7 (::) : (ult, pen) -> UltList pen ult -> UltList pen ult
- Totality: total
Visibility: public export
Fixity Declaration: infixr operator, level 7 .mult : (a : Monoid) -> U a -> UltList pen (U a) -> UltList pen (U a)
- Totality: total
Visibility: public export (++) : UltList pen (U a) -> UltList pen (U a) -> UltList pen (U a)
- Totality: total
Visibility: public export
Fixity Declaration: infixr operator, level 7 data UltListEquality : (pen -> pen -> Type) -> (ult -> ult -> Type) -> UltList pen ult -> UltList pen ult -> Type
Equality for UltList pen ult
Totality: total
Visibility: public export
Constructors:
Ultimate : ultRel i j -> UltListEquality penRel ultRel (Ultimate i) (Ultimate j)
ConsUlt : ultRel i j -> penRel x y -> UltListEquality penRel ultRel is js -> UltListEquality penRel ultRel ((i, x) :: is) ((j, y) :: js)
Hints:
Uninhabited (UltListEquality penRel ultRel (Ultimate i) (ConsUlt j1 y js))
Uninhabited (UltListEquality penRel ultRel (ConsUlt i1 x is) (Ultimate j))
(::) : ultRel i j -> () -> UltListEquality penRel ultRel (Ultimate i) (Ultimate j)
- Totality: total
Visibility: public export
Fixity Declaration: infixr operator, level 7 (::) : (ultRel i j, penRel x y) -> UltListEquality penRel ultRel is js -> UltListEquality penRel ultRel ((i, x) :: is) ((j, y) :: js)
- Totality: total
Visibility: public export
Fixity Declaration: infixr operator, level 7 UltListReflexive : (pen : Setoid) -> (ult : Setoid) -> (is : UltList (U pen) (U ult)) -> UltListEquality ((pen .equivalence) .relation) ((ult .equivalence) .relation) is is
- Totality: total
Visibility: public export UltListSymmetric : (pen : Setoid) -> (ult : Setoid) -> (is : UltList (U pen) (U ult)) -> (js : UltList (U pen) (U ult)) -> UltListEquality ((pen .equivalence) .relation) ((ult .equivalence) .relation) is js -> UltListEquality ((pen .equivalence) .relation) ((ult .equivalence) .relation) js is
- Totality: total
Visibility: public export UltListTransitive : (pen : Setoid) -> (ult : Setoid) -> (is : UltList (U pen) (U ult)) -> (js : UltList (U pen) (U ult)) -> (ks : UltList (U pen) (U ult)) -> UltListEquality ((pen .equivalence) .relation) ((ult .equivalence) .relation) is js -> UltListEquality ((pen .equivalence) .relation) ((ult .equivalence) .relation) js ks -> UltListEquality ((pen .equivalence) .relation) ((ult .equivalence) .relation) is ks
- Totality: total
Visibility: public export UltListSetoid : Setoid -> Setoid -> Setoid
- Totality: total
Visibility: public export MultHomomorphism : (a : Monoid) -> (s : Setoid) -> SetoidHomomorphism (Pair (cast a) (UltListSetoid s (cast a))) (UltListSetoid s (cast a)) (uncurry (a .mult))
- Totality: total
Visibility: public export AppendHomomorphismProperty : (a : Monoid) -> (x : Setoid) -> (is1 : UltList (U x) (U a)) -> (is2 : UltList (U x) (U a)) -> (js1 : UltList (U x) (U a)) -> (js2 : UltList (U x) (U a)) -> ((UltListSetoid x (cast a)) .equivalence) .relation is1 is2 -> ((UltListSetoid x (cast a)) .equivalence) .relation js1 js2 -> ((UltListSetoid x (cast a)) .equivalence) .relation (is1 ++ js1) (is2 ++ js2)
- Totality: total
Visibility: public export AppendHomomorphism : (a : Monoid) -> (x : Setoid) -> SetoidHomomorphism (Pair (UltListSetoid x (cast a)) (UltListSetoid x (cast a))) (UltListSetoid x (cast a)) (uncurry (++))
- Totality: total
Visibility: public export 0 FrexCarrier : Monoid -> Setoid -> Type
- Totality: total
Visibility: public export .sta : (a : Monoid) -> U a -> UltList x (U a)
Embedding of concrete elements in the frex by identifying
i with the singleton i
Totality: total
Visibility: public export.dyn : (a : Monoid) -> x -> UltList x (U a)
Embedding variables in the frex by identifying
x with 1 * x * 1
Totality: total
Visibility: public exportFrexAlgebraStructure : (a : Monoid) -> (x : Setoid) -> algebraOver' Signature (FrexCarrier a x)
- Totality: total
Visibility: public export FrexStructure : Monoid -> Setoid -> MonoidStructure
- Totality: total
Visibility: public export FrexSetoid : Monoid -> Setoid -> Setoid
- Totality: total
Visibility: public export MonAction : (a : Monoid) -> (s : Setoid) -> ActionData (U a) (FrexCarrier a s)
- Totality: total
Visibility: public export