Idris2Doc : Data.Setoid.Pair

Data.Setoid.Pair

Product of setoids

Definitions

recordAnd : {A : Type} -> {B : Type} ->RelA->RelB-> (A, B) -> (A, B) ->Type
  Binary relation conjunction

Totality: total
Visibility: public export
Constructor: 
MkAnd : {0A : Type} -> {0B : Type} ->p (fstxy1) (fstxy2) ->q (sndxy1) (sndxy2) ->Andpqxy1xy2

Projections:
.fst : {0A : Type} -> {0B : Type} ->Andpqxy1xy2->p (fstxy1) (fstxy2)
.snd : {0A : Type} -> {0B : Type} ->Andpqxy1xy2->q (sndxy1) (sndxy2)
.fst : {0A : Type} -> {0B : Type} ->Andpqxy1xy2->p (fstxy1) (fstxy2)
Totality: total
Visibility: public export
fst : {0A : Type} -> {0B : Type} ->Andpqxy1xy2->p (fstxy1) (fstxy2)
Totality: total
Visibility: public export
.snd : {0A : Type} -> {0B : Type} ->Andpqxy1xy2->q (sndxy1) (sndxy2)
Totality: total
Visibility: public export
snd : {0A : Type} -> {0B : Type} ->Andpqxy1xy2->q (sndxy1) (sndxy2)
Totality: total
Visibility: public export
Pair : Setoid->Setoid->Setoid
  Product of setoids

Totality: total
Visibility: public export
.fst : Pairab~>a
  Left projection setoid homomorphism

Totality: total
Visibility: public export
.snd : Pairab~>b
  Right projection setoid homomorphism

Totality: total
Visibility: public export
tuple : c~>a->c~>b->c~>Pairab
  Setoid homomorphism constructor

Totality: total
Visibility: public export
unitVal : (x : ()) -> (y : ()) ->x=y
  Unique value of type unit

Totality: total
Visibility: public export
unit : a~>cast ()
  The unique setoid map into the terminal type

Totality: total
Visibility: public export
const : Ub->a~>b
  The constant function as a setoid morphism

Totality: total
Visibility: public export
bimap : c~>a->d~>b->Paircd~>Pairab
  Setoid homomorphism constructor

Totality: total
Visibility: public export
distributeFunction : (Bool, Us) ->Either (Us) (Us)
  Function underlying the bijection 2 x s <~> s + s

Totality: total
Visibility: public export
distributeHomomorphism : SetoidHomomorphism (Pair (castBool) s) (Eitherss) distributeFunction
  States: the function underlying the bijection 2 x s <~> s + s is a setoid homomorphism

Totality: total
Visibility: public export
distribute : Pair (castBool) s~>Eitherss
  Setoid homomorphism involved in the bijection 2 x s <~> s + s

Totality: total
Visibility: public export
pairIso : a<~>c->b<~>d->Pairab<~>Paircd
Totality: total
Visibility: public export