record And : {A : Type} -> {B : Type} -> Rel A -> Rel B -> (A, B) -> (A, B) -> Type
Binary relation conjunction
Totality: total
Visibility: public export
Constructor: MkAnd : {0 A : Type} -> {0 B : Type} -> p (fst xy1) (fst xy2) -> q (snd xy1) (snd xy2) -> And p q xy1 xy2
Projections:
.fst : {0 A : Type} -> {0 B : Type} -> And p q xy1 xy2 -> p (fst xy1) (fst xy2)
.snd : {0 A : Type} -> {0 B : Type} -> And p q xy1 xy2 -> q (snd xy1) (snd xy2)
.fst : {0 A : Type} -> {0 B : Type} -> And p q xy1 xy2 -> p (fst xy1) (fst xy2)
- Totality: total
Visibility: public export fst : {0 A : Type} -> {0 B : Type} -> And p q xy1 xy2 -> p (fst xy1) (fst xy2)
- Totality: total
Visibility: public export .snd : {0 A : Type} -> {0 B : Type} -> And p q xy1 xy2 -> q (snd xy1) (snd xy2)
- Totality: total
Visibility: public export snd : {0 A : Type} -> {0 B : Type} -> And p q xy1 xy2 -> q (snd xy1) (snd xy2)
- Totality: total
Visibility: public export Pair : Setoid -> Setoid -> Setoid
Product of setoids
Totality: total
Visibility: public export.fst : Pair a b ~> a
Left projection setoid homomorphism
Totality: total
Visibility: public export.snd : Pair a b ~> b
Right projection setoid homomorphism
Totality: total
Visibility: public exporttuple : c ~> a -> c ~> b -> c ~> Pair a b
Setoid homomorphism constructor
Totality: total
Visibility: public exportunitVal : (x : ()) -> (y : ()) -> x = y
Unique value of type unit
Totality: total
Visibility: public exportunit : a ~> cast ()
The unique setoid map into the terminal type
Totality: total
Visibility: public exportconst : U b -> a ~> b
The constant function as a setoid morphism
Totality: total
Visibility: public exportbimap : c ~> a -> d ~> b -> Pair c d ~> Pair a b
Setoid homomorphism constructor
Totality: total
Visibility: public exportdistributeFunction : (Bool, U s) -> Either (U s) (U s)
Function underlying the bijection 2 x s <~> s + s
Totality: total
Visibility: public exportdistributeHomomorphism : SetoidHomomorphism (Pair (cast Bool) s) (Either s s) distributeFunction
States: the function underlying the bijection 2 x s <~> s + s is a setoid homomorphism
Totality: total
Visibility: public exportdistribute : Pair (cast Bool) s ~> Either s s
Setoid homomorphism involved in the bijection 2 x s <~> s + s
Totality: total
Visibility: public exportpairIso : a <~> c -> b <~> d -> Pair a b <~> Pair c d
- Totality: total
Visibility: public export