Idris2Doc : Frex.Powers.Fin

Frex.Powers.Fin

When the exponent is `Fin n`, we can represent the power Fin n
`Power` A using `Vect n A`.

Definitions

FinPowerSetoid : Nat->SetoidAlgebrasig->Setoid
Totality: total
Visibility: public export
FinPowerAlgebra : Nat->SetoidAlgebrasig->Algebrasig
Totality: total
Visibility: public export
indexHomomorphismLemma : (n : Nat) -> (a : SetoidAlgebrasig) -> (i : Finn) -> (op : Opsig) -> (zss : Vect (arityop) (U (FinPowerSetoidna))) -> (a.equivalence) .relation (indexi (map (a.Semop) (transposezss))) ((a.algebra) .Semop (map (indexi) zss))
Totality: total
Visibility: public export
FinPowerSetoidAlgebra : Nat->SetoidAlgebrasig->SetoidAlgebrasig
Totality: total
Visibility: public export
eval : Finn->FinPowerSetoidAlgebrana~>a
Totality: total
Visibility: public export
pointwiseBind : (t : Termsigy) -> (env : (y->Vectn (Ua))) -> (x : Finn) -> (a.equivalence) .relation (indexx ((FinPowerSetoidAlgebrana) .Semtenv)) (a.Semt (indexx.env))
Totality: total
Visibility: public export
representation : FinPowerSetoidAlgebrana<~>(~~>)
Totality: total
Visibility: public export
(~~>) : Nat->Modelpres->Modelpres
Totality: total
Visibility: public export
Fixity Declaration: infix operator, level 5
(^) : (a : Modelpres) -> (n : Nat) ->Power (cast (Finn)) a
Totality: total
Visibility: public export
Fixity Declaration: infix operator, level 10