Idris2Doc : Frex.Powers.Definition

Frex.Powers.Definition

The definition of what a power is

Definitions

recordParameterisation : (Pres : Presentation) ->Setoid->ModelPres->Type
  A parameterisation

Totality: total
Visibility: public export
Constructor: 
MkParameterisation : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> (Model : ModelPres) ->X~> (Model~~>A) ->ParameterisationPresXA

Projections:
.Eval : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> ({rec:0} : ParameterisationPresXA) ->X~> (Model{rec:0}~~>A)
.Model : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} ->ParameterisationPresXA->ModelPres
.Model : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} ->ParameterisationPresXA->ModelPres
Totality: total
Visibility: public export
Model : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} ->ParameterisationPresXA->ModelPres
Totality: total
Visibility: public export
.Eval : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> ({rec:0} : ParameterisationPresXA) ->X~> (Model{rec:0}~~>A)
Totality: total
Visibility: public export
Eval : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> ({rec:0} : ParameterisationPresXA) ->X~> (Model{rec:0}~~>A)
Totality: total
Visibility: public export
0PreservesEvaluation : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> (v : ParameterisationPresXA) -> (w : ParameterisationPresXA) ->v.Model~>w.Model->Type
  Model/algebra homomorphism that is also a parametrisation morphism

Totality: total
Visibility: public export
record(~>) : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} ->ParameterisationPresXA->ParameterisationPresXA->Type
Totality: total
Visibility: public export
Constructor: 
MkParameterisationMorphism : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0V : ParameterisationPresXA} -> {0W : ParameterisationPresXA} -> (H : V.Model~>W.Model) -> (0_ : PreservesEvaluationVWH) ->V~>W

Projections:
.H : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0V : ParameterisationPresXA} -> {0W : ParameterisationPresXA} ->V~>W->V.Model~>W.Model
0.preserve : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0V : ParameterisationPresXA} -> {0W : ParameterisationPresXA} -> ({rec:0} : V~>W) ->PreservesEvaluationVW (H{rec:0})

Fixity Declarations:
infix operator, level 5
infix operator, level 5
infix operator, level 5
.H : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0V : ParameterisationPresXA} -> {0W : ParameterisationPresXA} ->V~>W->V.Model~>W.Model
Totality: total
Visibility: public export
H : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0V : ParameterisationPresXA} -> {0W : ParameterisationPresXA} ->V~>W->V.Model~>W.Model
Totality: total
Visibility: public export
0.preserve : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0V : ParameterisationPresXA} -> {0W : ParameterisationPresXA} -> ({rec:0} : V~>W) ->PreservesEvaluationVW (H{rec:0})
Totality: total
Visibility: public export
0preserve : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0V : ParameterisationPresXA} -> {0W : ParameterisationPresXA} -> ({rec:0} : V~>W) ->PreservesEvaluationVW (H{rec:0})
Totality: total
Visibility: public export
0Extension : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} ->ParameterisationPresXA->Type
Totality: total
Visibility: public export
0UniqueExtension : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> (XtoA : ParameterisationPresXA) -> (other : ParameterisationPresXA) ->other~>XtoA->Type
Totality: total
Visibility: public export
0Uniqueness : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> (XtoA : ParameterisationPresXA) ->Extension->Type
Totality: total
Visibility: public export
recordUniversality : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} ->ParameterisationPresXA->Type
Totality: total
Visibility: public export
Constructor: 
IsUniversal : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0XtoA : ParameterisationPresXA} -> (Exists : Extension) -> (0_ : UniquenessExists) ->UniversalityXtoA

Projections:
.Exists : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0XtoA : ParameterisationPresXA} ->UniversalityXtoA->Extension
0.Unique : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0XtoA : ParameterisationPresXA} -> ({rec:0} : UniversalityXtoA) ->Uniqueness (Exists{rec:0})
.Exists : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0XtoA : ParameterisationPresXA} ->UniversalityXtoA->Extension
Totality: total
Visibility: public export
Exists : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0XtoA : ParameterisationPresXA} ->UniversalityXtoA->Extension
Totality: total
Visibility: public export
0.Unique : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0XtoA : ParameterisationPresXA} -> ({rec:0} : UniversalityXtoA) ->Uniqueness (Exists{rec:0})
Totality: total
Visibility: public export
0Unique : {Pres : Presentation} -> {X : Setoid} -> {A : ModelPres} -> {0XtoA : ParameterisationPresXA} -> ({rec:0} : UniversalityXtoA) ->Uniqueness (Exists{rec:0})
Totality: total
Visibility: public export
recordPower : {Pres : Presentation} ->Setoid->ModelPres->Type
Totality: total
Visibility: public export
Constructor: 
MkPower : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> (Data : ParameterisationPresXA) ->UniversalityData->PowerXA

Projections:
.Data : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} ->PowerXA->ParameterisationPresXA
.UP : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> ({rec:0} : PowerXA) ->Universality (Data{rec:0})
.Data : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} ->PowerXA->ParameterisationPresXA
Totality: total
Visibility: public export
Data : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} ->PowerXA->ParameterisationPresXA
Totality: total
Visibility: public export
.UP : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> ({rec:0} : PowerXA) ->Universality (Data{rec:0})
Totality: total
Visibility: public export
UP : {0Pres : Presentation} -> {0X : Setoid} -> {0A : ModelPres} -> ({rec:0} : PowerXA) ->Universality (Data{rec:0})
Totality: total
Visibility: public export