{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Homomorphism.Setoid (Σ : Signature) where
open import Fragment.Algebra.Algebra Σ
open import Fragment.Algebra.Homomorphism.Base Σ
open import Level using (Level; _⊔_)
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
private
variable
a b ℓ₁ ℓ₂ : Level
module _
{A : Algebra {a} {ℓ₁}}
{B : Algebra {b} {ℓ₂}}
where
open Setoid ∥ B ∥/≈
infix 4 _≗_
_≗_ : Rel (A ⟿ B) (a ⊔ ℓ₂)
f ≗ g = ∣ f ∣⃗ ~ ∣ g ∣⃗
where open import Fragment.Setoid.Morphism renaming (_≗_ to _~_)
≗-refl : ∀ {f} → f ≗ f
≗-refl = refl
≗-sym : ∀ {f g} → f ≗ g → g ≗ f
≗-sym f≗g {x} = sym (f≗g {x})
≗-trans : ∀ {f g h} → f ≗ g → g ≗ h → f ≗ h
≗-trans f≗g g≗h {x} = trans (f≗g {x}) (g≗h {x})
≗-isEquivalence : IsEquivalence _≗_
≗-isEquivalence = record { refl = λ {f} → ≗-refl {f}
; sym = λ {f g} → ≗-sym {f} {g}
; trans = λ {f g h} → ≗-trans {f} {g} {h}
}
_⟿_/≗ : Algebra {a} {ℓ₁} → Algebra {b} {ℓ₂} → Setoid _ _
A ⟿ B /≗ = record { Carrier = A ⟿ B
; _≈_ = _≗_
; isEquivalence = ≗-isEquivalence
}