{-# OPTIONS --without-K --exact-split --safe #-}

module Fragment.Setoid.Morphism.Setoid where

open import Fragment.Setoid.Morphism.Base

open import Level using (Level; _⊔_)
open import Relation.Binary using (Setoid; IsEquivalence; Rel)

private
  variable
    a b ℓ₁ ℓ₂ : Level

module _ {S : Setoid a ℓ₁} {T : Setoid b ℓ₂} where

  open Setoid T

  infix 4 _≗_

  _≗_ : Rel (S  T) (a  ℓ₂)
  f  g =  {x}   f  x   g  x

  ≗-refl :  {f}  f  f
  ≗-refl = refl

  ≗-sym :  {f g}  f  g  g  f
  ≗-sym f≗g {x} = sym (f≗g {x})

  ≗-trans :  {f g h}  f  g  g  h  f  h
  ≗-trans f≗g g≗h {x} = trans (f≗g {x}) (g≗h {x})

  ≗-isEquivalence : IsEquivalence _≗_
  ≗-isEquivalence = record { refl  = λ {f}  ≗-refl {f}
                           ; sym   = λ {f g}  ≗-sym {f} {g}
                           ; trans = λ {f g h}  ≗-trans {f} {g} {h}
                           }

_↝_/≗ : Setoid a ℓ₁  Setoid b ℓ₂  Setoid _ _
S  T /≗ = record { Carrier       = S  T
                  ; _≈_           = _≗_
                  ; isEquivalence = ≗-isEquivalence
                  }