{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.All where
open import Category.Applicative
open import Category.Monad
open import Data.Empty using (⊥)
open import Data.List.Base as List using (List; []; _∷_)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Membership.Propositional renaming (_∈_ to _∈ₚ_)
import Data.List.Membership.Setoid as SetoidMembership
open import Data.Product as Prod
  using (∃; -,_; _×_; _,_; proj₁; proj₂; uncurry)
open import Function
open import Level
open import Relation.Nullary hiding (Irrelevant)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Unary hiding (_∈_)
open import Relation.Binary using (Setoid; _Respects_)
open import Relation.Binary.PropositionalEquality as P
private
  variable
    a b p q r ℓ : Level
    A : Set a
    B : Set b
infixr 5 _∷_
data All {A : Set a} (P : Pred A p) : Pred (List A) (a ⊔ p) where
  []  : All P []
  _∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs)
infix 4 _[_]=_
data _[_]=_ {A : Set a} {P : Pred A p} :
            ∀ {x xs} → All P xs → x ∈ₚ xs → P x → Set (a ⊔ p) where
  here  : ∀ {x xs} {px : P x} {pxs : All P xs} →
          px ∷ pxs [ here refl ]= px
  there : ∀ {x xs y} {px : P x} {pxs : All P xs} {py : P y} {i : x ∈ₚ xs} →
          pxs [ i ]= px →
          py ∷ pxs [ there i ]= px
Null : Pred (List A) _
Null = All (λ _ → ⊥)
module _ {P : Pred A p} where
  uncons : ∀ {x xs} → All P (x ∷ xs) → P x × All P xs
  uncons (px ∷ pxs) = px , pxs
  head : ∀ {x xs} → All P (x ∷ xs) → P x
  head = proj₁ ∘ uncons
  tail : ∀ {x xs} → All P (x ∷ xs) → All P xs
  tail = proj₂ ∘ uncons
  reduce : (f : ∀ {x} → P x → B) → ∀ {xs} → All P xs → List B
  reduce f []         = []
  reduce f (px ∷ pxs) = f px ∷ reduce f pxs
  construct : (f : B → ∃ P) (xs : List B) → ∃ (All P)
  construct f []       = [] , []
  construct f (x ∷ xs) = Prod.zip _∷_ _∷_ (f x) (construct f xs)
  fromList : (xs : List (∃ P)) → All P (List.map proj₁ xs)
  fromList []              = []
  fromList ((x , p) ∷ xps) = p ∷ fromList xps
  toList : ∀ {xs} → All P xs → List (∃ P)
  toList pxs = reduce (λ {x} px → x , px) pxs
module _ {P : Pred A p} {Q : Pred A q} where
  map : P ⊆ Q → All P ⊆ All Q
  map g []         = []
  map g (px ∷ pxs) = g px ∷ map g pxs
module _ {P : Pred A p} {Q : Pred A q} {R : Pred A r} where
  zipWith : P ∩ Q ⊆ R → All P ∩ All Q ⊆ All R
  zipWith f ([] , [])             = []
  zipWith f (px ∷ pxs , qx ∷ qxs) = f (px , qx) ∷ zipWith f (pxs , qxs)
  unzipWith : R ⊆ P ∩ Q → All R ⊆ All P ∩ All Q
  unzipWith f []         = [] , []
  unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (f rx) (unzipWith f rxs)
module _ {P : Pred A p} {Q : Pred A q} where
  zip : All P ∩ All Q ⊆ All (P ∩ Q)
  zip = zipWith id
  unzip : All (P ∩ Q) ⊆ All P ∩ All Q
  unzip = unzipWith id
module _(S : Setoid a ℓ) {P : Pred (Setoid.Carrier S) p} where
  open Setoid S renaming (Carrier to C; refl to refl₁)
  open SetoidMembership S
  tabulateₛ : ∀ {xs} → (∀ {x} → x ∈ xs → P x) → All P xs
  tabulateₛ {[]}     hyp = []
  tabulateₛ {x ∷ xs} hyp = hyp (here refl₁) ∷ tabulateₛ (hyp ∘ there)
module _ {P : Pred A p} where
  tabulate : ∀ {xs} → (∀ {x} → x ∈ₚ xs → P x) → All P xs
  tabulate = tabulateₛ (P.setoid A)
self : ∀ {xs : List A} → All (const A) xs
self = tabulate (λ {x} _ → x)
module _ {P : Pred A p} where
  infixl 6 _[_]%=_ _[_]≔_
  updateAt : ∀ {x xs} → x ∈ₚ xs → (P x → P x) → All P xs → All P xs
  updateAt () f []
  updateAt (here refl) f (px ∷ pxs) = f px ∷ pxs
  updateAt (there i)   f (px ∷ pxs) =   px ∷ updateAt i f pxs
  _[_]%=_ : ∀ {x xs} → All P xs → x ∈ₚ xs → (P x → P x) → All P xs
  pxs [ i ]%= f = updateAt i f pxs
  _[_]≔_ : ∀ {x xs} → All P xs → x ∈ₚ xs → P x → All P xs
  pxs [ i ]≔ px = pxs [ i ]%= const px
module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)}
         {F : Set (a ⊔ p) → Set (a ⊔ p)}
         (App : RawApplicative F)
         where
  open RawApplicative App
  sequenceA : All (F ∘′ P) ⊆ F ∘′ All P
  sequenceA []       = pure []
  sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs
  mapA : ∀ {Q : Pred A q} → (Q ⊆ F ∘′ P) → All Q ⊆ (F ∘′ All P)
  mapA f = sequenceA ∘′ map f
  forA : ∀ {Q : Pred A q} {xs} → All Q xs → (Q ⊆ F ∘′ P) → F (All P xs)
  forA qxs f = mapA f qxs
module _ (p : Level) {A : Set a} {P : Pred A (a ⊔ p)}
         {M : Set (a ⊔ p) → Set (a ⊔ p)}
         (Mon : RawMonad M)
         where
  private App = RawMonad.rawIApplicative Mon
  sequenceM : All (M ∘′ P) ⊆ M ∘′ All P
  sequenceM = sequenceA p App
  mapM : ∀ {Q : Pred A q} → (Q ⊆ M ∘′ P) → All Q ⊆ (M ∘′ All P)
  mapM = mapA p App
  forM : ∀ {Q : Pred A q} {xs} → All Q xs → (Q ⊆ M ∘′ P) → M (All P xs)
  forM = forA p App
module _ {P : Pred A p} {Q : Pred A q} where
  lookupAny : ∀ {xs} → All P xs → (i : Any Q xs) → (P ∩ Q) (Any.lookup i)
  lookupAny (px ∷ pxs) (here qx) = px , qx
  lookupAny (px ∷ pxs) (there i) = lookupAny pxs i
module _ {P : Pred A p} {Q : Pred A q} {R : Pred A r} where
  lookupWith : ∀[ P ⇒ Q ⇒ R ] → ∀ {xs} → All P xs → (i : Any Q xs) →
               R (Any.lookup i)
  lookupWith f pxs i = Prod.uncurry f (lookupAny pxs i)
module _ {P : Pred A p} where
  lookup : ∀ {xs} → All P xs → (∀ {x} → x ∈ₚ xs → P x)
  lookup pxs = lookupWith (λ { px refl → px }) pxs
module _ {P : Pred A p} where
  all? : Decidable P → Decidable (All P)
  all? p []       = yes []
  all? p (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (p x ×-dec all? p xs)
  universal : Universal P → Universal (All P)
  universal u []       = []
  universal u (x ∷ xs) = u x ∷ universal u xs
  irrelevant : Irrelevant P → Irrelevant (All P)
  irrelevant irr []           []           = P.refl
  irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) =
    P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂)
  satisfiable : Satisfiable (All P)
  satisfiable = [] , []
all = all?
{-# WARNING_ON_USAGE all
"Warning: all was deprecated in v1.4.
Please use all? instead."
#-}