{-# OPTIONS --without-K --safe #-}
module Category.Functor where
open import Function hiding (Morphism)
open import Level
open import Relation.Binary.PropositionalEquality
private
  variable
    ℓ ℓ′ ℓ″ : Level
    A B X Y : Set ℓ
record RawFunctor (F : Set ℓ → Set ℓ′) : Set (suc ℓ ⊔ ℓ′) where
  infixl 4 _<$>_ _<$_
  infixl 1 _<&>_
  field
    _<$>_ : (A → B) → F A → F B
  _<$_ : A → F B → F A
  x <$ y = const x <$> y
  _<&>_ : F A → (A → B) → F B
  _<&>_ = flip _<$>_
record Morphism {F₁ : Set ℓ → Set ℓ′} {F₂ : Set ℓ → Set ℓ″}
                (fun₁ : RawFunctor F₁)
                (fun₂ : RawFunctor F₂) : Set (suc ℓ ⊔ ℓ′ ⊔ ℓ″) where
  open RawFunctor
  field
    op     : F₁ X → F₂ X
    op-<$> : (f : X → Y) (x : F₁ X) →
             op (fun₁ ._<$>_ f x) ≡ fun₂ ._<$>_ f (op x)