Idris2Doc : Syntax.PreorderReasoning.Setoid
  
  
Definitions
- data Step : (a : Setoid) -> U a -> U a -> Type
-   Totality: total
 Visibility: public export
 Constructor:- (...) : (0 y : U a) -> (a .equivalence) .relation x y -> Step a x y
 
- data FastDerivation : (a : Setoid) -> U a -> U a -> Type
-   Totality: total
 Visibility: public export
 Constructors:
   - (|~) : (x : U a) -> FastDerivation a x x
- (~~) : FastDerivation a x y -> Step a y z -> FastDerivation a x z
 
- CalcWith : (a : Setoid) -> FastDerivation a x y -> (a .equivalence) .relation x y
-   Visibility: public export
- (..<) : (y : U a) -> (a .equivalence) .relation y x -> Step a x y
-   Visibility: public export
 Fixity Declarations:
 infix operator, level 1
 infix operator, level 1
 infix operator, level 1
- (..>) : (0 y : U a) -> (a .equivalence) .relation x y -> Step a x y
-   Visibility: public export
 Fixity Declarations:
 infix operator, level 1
 infix operator, level 1
 infix operator, level 1
- (.=.) : (y : U a) -> x = y -> Step a x y
-   Visibility: public export
 Fixity Declarations:
 infix operator, level 1
 infix operator, level 1
 infix operator, level 1
- (.=>) : (y : U a) -> x = y -> Step a x y
-   Visibility: public export
 Fixity Declarations:
 infix operator, level 1
 infix operator, level 1
 infix operator, level 1
- (.=<) : (y : U a) -> y = x -> Step a x y
-   Visibility: public export
 Fixity Declarations:
 infix operator, level 1
 infix operator, level 1
 infix operator, level 1