Idris2Doc : Syntax.PreorderReasoning.Setoid
Definitions
data Step : (a : Setoid) -> U a -> U a -> Type
- Totality: total
Visibility: public export
Constructor: (...) : (0 y : U a) -> (a .equivalence) .relation x y -> Step a x y
data FastDerivation : (a : Setoid) -> U a -> U a -> Type
- Totality: total
Visibility: public export
Constructors:
(|~) : (x : U a) -> FastDerivation a x x
(~~) : FastDerivation a x y -> Step a y z -> FastDerivation a x z
CalcWith : (a : Setoid) -> FastDerivation a x y -> (a .equivalence) .relation x y
- Visibility: public export
(..<) : (y : U a) -> (a .equivalence) .relation y x -> Step a x y
- Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
infix operator, level 1 (..>) : (0 y : U a) -> (a .equivalence) .relation x y -> Step a x y
- Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
infix operator, level 1 (.=.) : (y : U a) -> x = y -> Step a x y
- Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
infix operator, level 1 (.=>) : (y : U a) -> x = y -> Step a x y
- Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
infix operator, level 1 (.=<) : (y : U a) -> y = x -> Step a x y
- Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
infix operator, level 1