Idris2Doc : Frexlet.Monoid.Commutative.Coproduct

Frexlet.Monoid.Commutative.Coproduct

The coproduct of two commutative monoids is their cartesian product

Reexports

importpublic Frexlet.Monoid.Commutative.Nat
importpublic Data.Vect.Extra

Definitions

CoprodAlgebraStructure : CommutativeMonoid->CommutativeMonoid->AlgebraSignature
Totality: total
Visibility: public export
CoprodSetoidEquivalence : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Equivalence (Ua, Ub)
Totality: total
Visibility: public export
CoprodSetoid : CommutativeMonoid->CommutativeMonoid->Setoid
Totality: total
Visibility: public export
CoprodAlgebraCongruence : (a : CommutativeMonoid) -> (b : CommutativeMonoid) -> (op : OpSignature) ->CongruenceWRT (CoprodSetoidab) ((CoprodAlgebraStructureab) .Semop)
Totality: total
Visibility: public export
CoprodAlgebra : CommutativeMonoid->CommutativeMonoid->MonoidStructure
Totality: total
Visibility: public export
CoprodValidate : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->ValidatesCommutativeMonoidTheory (CoprodAlgebraab)
Totality: total
Visibility: public export
Coprod : CommutativeMonoid->CommutativeMonoid->CommutativeMonoid
Totality: total
Visibility: public export
CoprodLftFunction : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Ua->U (Coprodab)
Totality: total
Visibility: public export
CoprodLftSetoidHomomorphism : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->SetoidHomomorphism (casta) (cast (Coprodab)) (CoprodLftFunctionab)
Totality: total
Visibility: public export
CoprodLftHomomorphism : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Homomorphism (a.Algebra) ((Coprodab) .Algebra) (CoprodLftFunctionab)
Totality: total
Visibility: public export
CoprodRgtFunction : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Ub->U (Coprodab)
Totality: total
Visibility: public export
CoprodRgtSetoidHomomorphism : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->SetoidHomomorphism (castb) (cast (Coprodab)) (CoprodRgtFunctionab)
Totality: total
Visibility: public export
CoprodRgtHomomorphism : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Homomorphism (b.Algebra) ((Coprodab) .Algebra) (CoprodRgtFunctionab)
Totality: total
Visibility: public export
Coproduct : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->a<~.~>b
Totality: total
Visibility: public export
ExtenderFunction : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->ExtenderFunction
Totality: total
Visibility: public export
ExtenderSetoidHomomorphism : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->ExtenderSetoidHomomorphism
Totality: total
Visibility: public export
ExtenderIsHomomorphism : (a : CommutativeMonoid) -> (b : CommutativeMonoid) -> (other : a<~.~>b) ->Homomorphism ((Coprodab) .Algebra) ((other.Sink) .Algebra) (ExtenderFunctionabother)
Totality: total
Visibility: public export
Extender : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Extender
Totality: total
Visibility: public export
normalForm : (a : CommutativeMonoid) -> (b : CommutativeMonoid) -> (xy : U (Coprodab)) -> (Coprodab) .rel ((fstxy, O1) .+. (O1, sndxy)) xy
Totality: total
Visibility: public export
extenderUniqueness : (a : CommutativeMonoid) -> (b : CommutativeMonoid) -> (other : a<~.~>b) -> (extend : Coproductab~>other) -> (xy : U (Coprodab)) -> (other.Sink) .rel (((extend.H) .H) .Hxy) ((((Extenderabother) .H) .H) .Hxy)
Totality: total
Visibility: public export
Uniqueness : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Uniqueness
Totality: total
Visibility: public export
CoproductCospan : (a : CommutativeMonoid) -> (b : CommutativeMonoid) ->Coproductab
Totality: total
Visibility: public export