Idris2Doc : Data.Setoid.Vect.Inductive

Data.Setoid.Vect.Inductive

The setoid of vectors over a given setoid, defined inductively

Definitions

data.VectEquality : (a : Setoid) ->Rel (Vectn (Ua))
Totality: total
Visibility: public export
Constructors:
Nil : a.VectEquality [] []
(::) : (a.equivalence) .relationxy->a.VectEqualityxsys->a.VectEquality (x::xs) (y::ys)
(++) : a.VectEqualityxsys->a.VectEqualityasbs->a.VectEquality (xs++as) (ys++bs)
Totality: total
Visibility: export
Fixity Declaration: infixr operator, level 7
.VectEqualityReflexive : (a : Setoid) -> (xs : Vectn (Ua)) ->a.VectEqualityxsxs
Totality: total
Visibility: public export
.VectEqualitySymmetric : (a : Setoid) -> (xs : Vectn (Ua)) -> (ys : Vectn (Ua)) ->a.VectEqualityxsys->a.VectEqualityysxs
Totality: total
Visibility: public export
.VectEqualityTransitive : (a : Setoid) -> (xs : Vectn (Ua)) -> (ys : Vectn (Ua)) -> (zs : Vectn (Ua)) ->a.VectEqualityxsys->a.VectEqualityyszs->a.VectEqualityxszs
Totality: total
Visibility: public export
VectSetoid : Nat->Setoid->Setoid
Totality: total
Visibility: public export
VectMapFunctionHomomorphism : (f : a~>b) ->SetoidHomomorphism (VectSetoidna) (VectSetoidnb) (map (f.H))
Totality: total
Visibility: public export
VectMapHomomorphism : a~>b->VectSetoidna~>VectSetoidnb
Totality: total
Visibility: public export
VectMapIsHomomorphism : SetoidHomomorphism (a~~>b) (VectSetoidna~~>VectSetoidnb) VectMapHomomorphism
Totality: total
Visibility: public export
VectMap : (a~~>b) ~> (VectSetoidna~~>VectSetoidnb)
Totality: total
Visibility: public export