Idris2Doc : Data.Setoid.List

Data.Setoid.List

Setoid of lists over a setoid and associated definitions

Definitions

data.ListEquality : (a : Setoid) ->Rel (List (Ua))
Totality: total
Visibility: public export
Constructors:
Nil : a.ListEquality [] []
(::) : (a.equivalence) .relationxy->a.ListEqualityxsys->a.ListEquality (x::xs) (y::ys)
.ListEqualityReflexive : (a : Setoid) -> (xs : List (Ua)) ->a.ListEqualityxsxs
Totality: total
Visibility: public export
.ListEqualitySymmetric : (a : Setoid) -> (xs : List (Ua)) -> (ys : List (Ua)) ->a.ListEqualityxsys->a.ListEqualityysxs
Totality: total
Visibility: public export
.ListEqualityTransitive : (a : Setoid) -> (xs : List (Ua)) -> (ys : List (Ua)) -> (zs : List (Ua)) ->a.ListEqualityxsys->a.ListEqualityyszs->a.ListEqualityxszs
Totality: total
Visibility: public export
ListSetoid : Setoid->Setoid
Totality: total
Visibility: public export
ListMapFunctionHomomorphism : (f : a~>b) ->SetoidHomomorphism (ListSetoida) (ListSetoidb) (map (f.H))
Totality: total
Visibility: public export
ListMapHomomorphism : a~>b->ListSetoida~>ListSetoidb
Totality: total
Visibility: public export
ListMapIsHomomorphism : SetoidHomomorphism (a~~>b) (ListSetoida~~>ListSetoidb) ListMapHomomorphism
Totality: total
Visibility: public export
ListMap : (a~~>b) ~> (ListSetoida~~>ListSetoidb)
Totality: total
Visibility: public export
reverseHomomorphic : (x : List (Ua)) -> (y : List (Ua)) ->a.ListEqualityxy->a.ListEquality (reversex) (reversey)
Totality: total
Visibility: public export
appendCongruence : (x1 : List (Ua)) -> (x2 : List (Ua)) -> (y1 : List (Ua)) -> (y2 : List (Ua)) ->a.ListEqualityx1y1->a.ListEqualityx2y2->a.ListEquality (x1++x2) (y1++y2)
Totality: total
Visibility: public export