Idris2Doc : Data.Relation.Closure.ReflexiveTransitive

Data.Relation.Closure.ReflexiveTransitive

Definitions

dataRTList : Rela->Rela
Totality: total
Visibility: public export
Constructors:
Nil : RTListrxx
(::) : rxy->RTListryz->RTListrxz
dataSnocRTList : Rela->Rela
Totality: total
Visibility: public export
Constructors:
Lin : SnocRTListrxx
(:<) : SnocRTListrxy->ryz->SnocRTListrxz
(<>>) : SnocRTListrxy->RTListryz->RTListrxz
Totality: total
Visibility: export
Fixity Declaration: infixr operator, level 6
reflexive : (===)~>RTListr
Totality: total
Visibility: export
(++) : RTListrxy->RTListryz->RTListrxz
Totality: total
Visibility: export
Fixity Declaration: infixr operator, level 7
concat : RTList (RTListr) ~>RTListr
Totality: total
Visibility: export
gmap : (f : (a->b)) ->p~> (q `on` f) ->RTListp~> (RTListq `on` f)
Totality: total
Visibility: export
map : p~>q->RTListp~>RTListq
Totality: total
Visibility: export
reverseAcc : r~>flips->flip (RTLists) xy->RTListryz->flip (RTLists) xz
Totality: total
Visibility: export
reverse : r~>flips->RTListr~>flip (RTLists)
Totality: total
Visibility: export
deloop : (Orda, DecEqa) =>RTListr~>RTListr
  Deloop detects whenever a proof forms a loop, and removes it e.g.

x7 <-r- x6 <-r- x5
| ^
r r
v |
x1 -r-> x2 -r-> x3 -r-> x4 -r-> x8

becomes

x1 -r-> x2 -r-> x3 -r-> x4 -r-> x8

Totality: total
Visibility: export